Phase Relationships Involving Mixed O' $-\beta$ ' Sialons in the Y-Si-Al-O-N System

W. Y. Sun, Z. K. Huang, G. Z. Cao and D. S. Yan (T. S. Yen)

Shanghai Institute of Ceramics, Chinese Academy of Sciences, People's Republic of China

SUMMARY

As a preliminary to investigating $O'-\beta'$ phase relationships in the Y-Si-Al-O-N system, sub-solidus phase relationships in the $Si_2N_2O-AlN-Y_2O_3$ system have been studied. The results show that two AlN-containing triangles and eight tetrahedra, of which seven contain YAG, occur in this system, namely: Y_2O_3 -J-AlN; J-K-AlN; H-Si_3N_4-O'_{ss}-Si_2N_2O; K-Si_3N_4-H-YAG; K-Si_3N_4-AlN-YAG; H-Si_3N_4-O'_{ss}-YAG; Si_3N_4-O'_{ss}-\beta' (z = 0.8)-YAG; X- β' (z = 0.8)-X-YAG; X- β' (z = 0.8)- β' (z = 4)-YAG; Si_3N_4- β' (z = 4)-AIN-YAG.

Phase relationships involving $O'-\beta'$ sialon in the Y-Si-Al-O-N system have been revised. In the Si-Al-O-N system, the $O'-\beta'$ two-phase region consists of two compatibility triangles: Si_3N_4 - Si_2N_2O - $O'_{ss}(x=0.3)$ and $Si_3N_4-\beta'(z=0.8)-O'_{ss}(x=0.3)$. In the Y-Si-Al-O-N system, there are three compatibility tetrahedra involved in the $O'-\beta'$ region, and the sub-solidus phase relationships depend on temperature. At 1550°C, these three compatibility tetrahedra are Si_3N_4 - Si_2N_2O - $O'_{ss}(x=0.3)$ -H, Si_3N_4 - $O'_{ss}(x=0.3)$ -H-YAG and $Si_3N_4-\beta'(z=0.8)-O'_{ss}(x=0.3)$ -YAG. At devitrification temperatures (1200-1300°C), they are: $Si_3N_4-Si_2N_2O$ - $O'_{ss}(x=0.3)$ -Y₂Si₂O₇, $Si_3N_4-O'_{ss}(x=0.3)$ -Y₂Si₂O₇-YAG and $Si_3N_4-\beta'(z=0.8)$ - $O'_{ss}(x=0.3)$ -Y₂Si₂O₇, $Si_3N_4-O'_{ss}(x=0.3)$ -Y₂Si₂O₇-YAG and $Si_3N_4-\beta'(z=0.8)$ - $O'_{ss}(x=0.3)$ -YAG.

1 INTRODUCTION

In recent years two-phase ceramics have received more and more attention, since they offer the advantage over single phase materials that their

277

Int. J. High Technology Ceramics 0267-3762/87/\$03.50 © 1987 Elsevier Applied Science Publishers Ltd, England. Printed in Great Britain

Fig. 1. The compatibility pyramid $Si_3N_4-Si_2N_2O-\beta'(z=0.8)-O'_{ss}-Y_2Si_2O_7$ from Naik et al.⁴ YAG = $3Y_2O_3$. $5Al_2O_3$, $YS_2 = Y_2Si_2O_7$, $H = Y_{10}(SiO_4)_6N_2$.

properties can be tailored extensively. β' -Sialon has already been established as a good high-temperature engineering ceramic with excellent mechanical properties. O'-Sialon (Si₂N₂O)_{ss} ceramics either hot-pressed¹ or pressureless sintered² possess good oxidation resistance up to 1350–1400°C. O'- β' composite sialons offer good prospects for development as ceramic materials, combining the mechanical properties of β' with the good oxidation resistance of O'. Dense O'- β' sialons³ have been fabricated by pressureless sintering using Y₂O₃ as an additive. Most of the intergranular glassy phase can be devitrified to produce Y₂Si₂O₇ and YAG by sequential

Fig. 2. Sub-solidus diagram of the $Si_2N_2O-Al_2O_3-Y_2O_3$ system from Cao *et al.*⁵ J = $2Y_2O_3 \cdot Si_2N_2O$; K = $Y_2O_3 \cdot Si_2N_2O$; SN = Si_3N_4 ; YAM = $2Y_2O_3 \cdot Al_2O_3$.

heat treatments and the oxidation resistance of the devitrified specimens is good up to at least 1300°C.

The crystalline products from the intergranular glass are determined by phase relationships. Previous phase relationships⁴ show that $O'-\beta'$ and $Y_2Si_2O_7$ form a compatibility region, as shown in Fig. 1. However, Cao's work⁵ on phase relations in the $Si_2N_2O-Al_2O_3-Y_2O_3$ system indicates that O'-sialon should be in equilibrium with YAG and also with Si_3N_4 and H-phase, as shown in Fig. 2. The present paper attempts to clear up this confusion.

The Si₂N₂O-AlN-Y₂O₃ plane is considered to be mainly concerned with phase relationships involving O'- β ' sialons. Like β '-sialon which can be synthesized from AlN and SiO₂⁶, O'- β ' composite sialons can also be produced by reacting AlN and Si₂N₂O. For these reasons phase relationships in the Si₂N₂O-AlN-Y₂O₃ system were studied, and also taken as a continuation of our previous work on phase equilibrium studies in the Si₂N₂O-containing system.⁵

2 EXPERIMENTAL

Aluminium nitride, as one of the starting materials, was prepared in our laboratory, and contained 1.4% oxygen. The details of other starting powders used and preparation of specimens are the same as described in our previous paper.⁵ The hot-pressing temperature used was $1700-1750^{\circ}$ C for the compositions on the line joining Si₂N₂O and AlN, and 1600° C for ternary Y₂O₃-containing compositions. The phase compositions of the specimens after hot-pressing were determined by X-ray diffraction analysis.

3 RESULTS AND DISCUSSION

3.1 Phase relationships in the Si_2N_2O -AlN system

As shown in the Si–Al–O–N phase diagram of Fig. 3, Si₂N₂O, O'_{ss}, Si₃N₄ and β'_{ss} form a compatibility region. The solubility limit of Al₂O₃ in Si₂N₂O was determined to be 15 mol/% (i.e. x = 0.3 in the formula Si_{2-x}Al_xN_{2-x}O_{1+x}).⁵ The upper limit of β' -sialon coexisting with O'_{ss} was detected to be z = 0.8 in the formula Si_{6-z}Al_zO_zN_{8-z}.³ Our previous work ⁵ shows there should be a tie line joining O'_{ss}(x = 0.3) to Si₃N₄. Therefore the Si₂N₂O–AlN join would cut across four tie lines: Si₃N₄–O'_{ss}, $\beta'(z = 0.8)$ –O'_{ss}, $\beta'(z = 0.8)$ –x and Si₃N₄– $\beta'(z = 4)$ at Si₂N₂O:AlN mol ratios of 4.3:1, 3:1, 1.6:1 and 1:1 respectively, forming five different phase regions: Si₂N₂O–O'_{ss}–Si₃N₄, Si₃N₄–O'_{ss}– $\beta'(z = 0.8)$ –x, $x - \beta'(z = 0.8) - \beta'(z = 2)$ and $\beta'(z = 2)$ –AlN (and

Fig. 3. Phase relationships in the Si_3N_4 -SiO₂-Al₂O₃-AlN system at 1700°C after Thompson *et al.*⁸

polytypes). The present work using Si_2N_2O and AlN as starting materials has confirmed the existence of these phase regions. The temperature used was 1700–1750°C, since above 1750°C the decomposition of Si_2N_2O occurs according to the reaction:

$$4\operatorname{Si}_2\operatorname{N}_2\operatorname{O}(S) \rightarrow \beta' - \operatorname{Si}_3\operatorname{N}_4(S) + \operatorname{Si}(L) + 4\operatorname{SiO}(G) + 2\operatorname{N}_2(G)$$

Compositions between Si₂N₂O and 4·3 Si₂N₂O:AlN contain Si₂N₂O (and/or O'_{ss}) and β' -Si₃N₄ (with small amounts of α -Si₃N₄). Pure $\beta'(z = 2)$ can be obtained at the Si₂N₂O:AlN composition at 1750°C but below this temperature the reaction is not complete. The compositions between Si₂N₂O:AlN and AlN give $\beta'(z=2)$ and AlN with a little 15R. The appearance of AlN instead of polytypes is expected, since the temperature used was not high enough to produce polytypes which are generally formed at above 1800°C if no or only a little liquid phase is present. The above results indicate that O'- β' sialon and $\beta'(z=2)$ can be synthesized from Si₂N₂O and AlN mixtures.

3.2 Phase relationships in two Y₂O₃-containing binary systems

The two systems Y_2O_3 -Si₂N₂O and Y_2O_3 -AlN have been studied in our previous work ^{5,7} and it is unnecessary to repeat them. In the Y_2O_3 -Si₂N₂O system, there are two compounds $2Y_2O_3$. Si₂N₂O(J) and Y_2O_3 . Si₂N₂O(K), as shown in Fig. 2. At the Si₂N₂O-rich corner, Si₂N₂O reacts at 1550°C with

 Y_2O_3 to form $Y_{10}(SiO_4)_6N_2(H)$ and Si_3N_4 (mainly α -form, with a little β) by the following reactions:

$$10Si_2N_2O + 6Y_2O_3 \rightarrow Y_{10}(SiO_4)_6N_2 + 4Si_3N_4 + Y_2O_3 \cdot Si_2N_2O 9Si_2N_2O + 5Y_2O_3 \rightarrow Y_{10}(SiO_4)_6N_2 + 4Si_3N_4$$

The existence of the compatibility region $Si_2N_2O-O'_{ss}-Si_3N_4$ -h is contrary to other authors' results. The contradiction is caused mainly by the different experimental conditions used. Our previous work shows that H-phase completely disappears above 1700°C to form the glassy phase which can be devitrified to give $Y_2Si_2O_7$. The fact that different products are obtained by different experimental conditions emphasizes the point that sub-solidus phase relationships are not temperature invariant.

The system Y₂O₃-AlN does not produce any quaternary compounds.

3.3 Sub-solidus phase relationships in the Si₂N₂O-AlN-Y₂O₃ system

The temperature used inside the triangle was 1600°C which did not give any liquid in the compositions explored. The results obtained were used to construct the phase diagrams shown in Figs 4–6. Within this system, there exists two AlN-containing compatibility triangles $J-Y_2O_3$ -AlN and K-J-AlN. In the Si₂N₂O-rich area, the phase relationships are rather complicated; K, H, Si₃N₄, O'_{ss} (x = 0·3), β'_{ss} and AlN are all compatible with YAG, thus forming seven YAG-containing compatibility tetrahedra. Altogether there exist eight tetrahedra involved in this system:

$$\begin{array}{l} H-Si_{3}N_{4}-O_{ss}'-Si_{2}N_{2}O\\ K-Si_{3}N_{4}-AlN-YAG\\ K-Si_{3}N_{4}-H-YAG\\ H-Si_{3}N_{4}-O_{ss}'-YAG\\ Si_{3}N_{4}-O_{ss}'-\beta'(z=0.8)-YAG\\ O_{ss}'-\beta'(z=0.8)-X-YAG\\ X-\beta'(z=0.8)-\beta'(z=4)-YAG\\ Si_{3}N_{4}-\beta'(z=4)-AlN-YAG\end{array}$$

The results obtained are in good agreement with our previous work,⁵ but contrary to the phase relationships obtained by Naik *et al.*⁴ who reported the whole $Si_3N_4-Si_2N_2O-O'_{ss}-\beta'(z=0.8)$ region to be coexisting with $Y_2Si_2O_7$, as shown in Fig. 1. The determination of phase relationships of this ternary system is beneficial for the fabrication of O'- β' composite ceramics from Si_2N_2O and AlN using Y_2O_3 as an additive.

Fig. 4. Sub-solidus diagram of the Si₂N₂O-AlN-Y₂O₃ system.

Fig. 5. Sub-solidus diagram of the Si₂N₂O-AlN-Y₂O₃ system. I = O'_{ss} + Si₃N₄; II = O'_{ss} + $\beta'(z=0.8)$; III = $\beta'(z=0.8) + x$; (5:9) = H + Si₃N₄; A = K + H + Si₃N₄ + YAG; B = H + Si₃N₄ + Si₂N₂O + O'_{ss}; C = H + Si₃N₄ + O'_{ss} + YAG; D = Si₃N₄ + O'_{ss} + $\beta'(z=0.8) + YAG$; E = O'_{ss} + $\beta'(z=0.8) + X + YAG$; F = X + $\beta'(z=0.8) + \beta'(z=4) + YAG$; G = Si₃N₄ + $\beta'(z=4) + AlN + YAG$.

Fig. 6. Phase relationships of O'- β '-sialon in Y-Si-Al-O-N system (a) at 1550°C, (b) at devitrifying temperatures 1200-1300°C.

3.4 Phase relationships involving O'- β ' sialon in the Y-Si-Al-O-N system

 $O'-\beta'$ Phase relationships can be summarized as follows:

$$Si_3N_4 - \beta'(z = 0.8) - O'_{ss}(x = 0.3) - YAG$$

 $Si_3N_4 - O'_{ss}(x = 0.3) - YAG - Y_2Si_2O_7(or H)$
 $Si_3N_4 - Si_2N_2O - O'_{ss}(x = 0.3) - Y_2Si_2O_7(or H)$

The two triangles $Si_3N_4-Si_2N_2O-O'_{ss}(x=0.3)$ and $Si_3N_4-O'_{ss}(x=0.3)-YAG$ at lower temperatures (about 1550°C) join to H-phase. At higher temperatures (about 1700°C) H-phase dissolves into liquid phase and $Y_2Si_2O_7$ can then be crystallized from the liquid if sequential heat treatment is used. So the phase relationships of O'- β ' sialon are temperature dependent. For the fabrication of dense O'- β ' sialon ceramics, the temperature used for sintering is usually above 1700°C and $Y_2Si_2O_7$ is expected to be the intergranular crystalline phase instead of H-phase. The revised phase relationships can satisfactorily explain the appearance of YAG in O'- β ' sialon ceramics³ and indicated that there is a choice of either $Y_2Si_2O_7$, YAG or both of these as grain-boundary phases for O'- β ' sialons.

4 CONCLUSIONS

- (1) The sub-solidus phase diagram of the $Si_2N_2O-AlN-Y_2O_3$ is presented. Within this system no new compound has been found but two ternary phase regions and eight quaternary tetrahedra are identified.
- (2) Phase relationships involving O'- β ' sialons in the Y-Si-Al-O-N system have been revised. The phase relationships are temperature dependent. Three compatibility tetrahedra, Si₃N₄-Si₂N₂O-O'_{ss}-Y₂Si₂O₇ (or H), Si₃N₄-O'_{ss}- β '(z = 0.8)-YAG and O'_{ss}-Si₃N₄-YAG-Y₂Si₂O₇(or H) have been found.

REFERENCES

- 1. Huang, Z. K., Greil, P. and Petzow, G., Formation of Silicon Oxynitride from Si₃N₄ and SiO₂ in the Presence of Al₂O₃, *Ceramics International*, **10**(1) (1984) 14-17.
- Trigg, M. B. and Jack, K. H., Silicon Oxynitride and O'-Sialon Ceramics, In: Proc. First Int. Symp. on Ceramic Components for Engines, 1983 Hakone, Japan, Eds S. Somiya, E. Kanai and K. Ands, KTK Scientific Publishers, Japan, 1984, 199–217.
- Sun, W. Y., Thompson, D. P. and Jack, K. H., The Fabrication of Composite O'-β' Sialon Ceramics. In: Proc. Twenty-First Univ. Conf. on Ceramic Science, Tailoring Multiphase and Composite Ceramics, Eds R. E. Tressler, G. L. Messing, C. G. Pantano and R. E. Newnham, 1986, 93-101.

- 4. Naik, I. K. and Tien, T. Y., Subsolidus Phase Relations in Part of the System Si, Al, Y/N, O, J. Amer. Ceram. Soc., 62(11-12) (1979) 642-3.
- Cao, G. Z., Huang, Z. K, Fu, X. R. and Yan, D. S. (Yen, T. S.), Phase Equilibrium Studies in Si₂N₂O-containing System: 1, Phase Relations in the Si₂N₂O-Al₂O₃-Y₂O₃ System, Int. J. High Tech. Ceram., 1(2) (1985) 119-27.
- Boskovic, S., Gauckler, L. J., Petzow, G. and Tien, T. Y., Reaction Sintering Forming β-Si₃N₄ Solid Solutions in the System Si, Al/N, O; 1, Sintering of SiO₂-AlN Mixtures, *Powder Metallurgy International*, 9(4), (1977) 185-9.
- Huang, Z. K., Greil, P. and Petzow, G., Formation of α-Si₃N₄ Solid Solutions in the System Si₃N₄-AlN-Y₂O₃, J. Amer. Ceram. Soc., 66(6) (1983) 96-7.
- Thompson, D. P., Sun, W. Y. and Walls, P. A., O'-β' and α'-β' Sialon Ceramics. In: Proc. Second Int. Symp. on Ceramic Materials and Components for Engines, 1986 Lübeck-Travemünde, FRG, Eds W. Bunk and H. Hausner, Deutsche Keramische Gesellschaft, 643-50.

Received 21 March 1987; accepted 9 August 1987